Convergence of Adaptive Finite Element Methods
نویسندگان
چکیده
Title of dissertation: CONVERGENCE OF ADAPTIVE FINITE ELEMENT METHODS Khamron Mekchay, Doctor of Philosophy, 2005 Dissertation directed by: Professor Ricardo H. Nochetto Department of Mathematics We develop adaptive finite element methods (AFEMs) for elliptic problems, and prove their convergence, based on ideas introduced by Dörfler [7], and Morin, Nochetto, and Siebert [15, 16]. We first study an AFEM for general second order linear elliptic PDEs, thereby extending the results of Morin et al [15, 16] that are valid for the Laplace operator. The proof of convergence relies on quasi-orthogonality, which accounts for the bilinear form not being a scalar product, together with novel error and oscillation reduction estimates, which now do not decouple. We show that AFEM is a contraction for the sum of energy error plus oscillation. Numerical experiments, including oscillatory coefficients and both coercive and non-coercive convection-diffusion PDEs, illustrate the theory and yield optimal meshes. The role of oscillation control is now more crucial than in [15, 16] and is discussed and documented in the experiments. We next introduce an AFEM for the Laplace-Beltrami operator on C graphs in R (d ≥ 2). We first derive a posteriori error estimates that account for both the energy error in H and the geometric error in W 1 ∞ due to approximation of the surface by a polyhedral one. We devise a marking strategy to reduce the energy and geometric errors as well as the geometric oscillation. We prove that AFEM is a contraction on a suitably scaled sum of these three quantities as soon as the geometric oscillation has been reduced beyond a threshold. The resulting AFEM converges without knowing such threshold or any constants, and starting from any coarse initial triangulation. Several numerical experiments illustrate the theory. Finally, we introduce and analyze an AFEM for the Laplace-Beltrami operator on parametric surfaces, thereby extending the results for graphs. Note that, due to the nature of parametric surfaces, the geometric oscillation is now measured in terms of the differences of tangential gradients rather than differences of normals as for graphs. Numerical experiments with closed surfaces are provided to illustrate the theory. CONVERGENCE OF ADAPTIVE FINITE ELEMENT METHODS
منابع مشابه
Convergence of adaptive finite element methods for eigenvalue problems
In this article we prove convergence of adaptive finite element methods for second order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation.
متن کاملAn optimal adaptive mixed finite element method
Various applications in fluid dynamics and computational continuum mechanics motivate the development of reliable and efficient adaptive algorithms for mixed finite element methods. In order to save degrees of freedom, not all but just a selection of finite element domains are refined. Hence the fundamental question of convergence as well as the question of optimality require new mathematical a...
متن کاملAdaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملAdaptive Quadrilateral and Hexahedral Finite Element Methods with Hanging Nodes and Convergence Analysis
In this paper we study the convergence of adaptive finite element methods for the general non-affine equivalent quadrilateral and hexahedral elements on 1-irregular meshes with hanging nodes. Based on several basic ingredients, such as quasi-orthogonality, estimator reduction and Döfler marking strategy, convergence of the adaptive finite element methods for the general second-order elliptic pa...
متن کاملComparison of different numerical methods for calculating stress intensity factors in analysis of fractured structures
In this research, an efficient Galerkin Finite Volume Method (GFVM) along with the h–refinement adaptive process and post–processing error estimation analysis is presented for fracture analysis. The adaptive strategy is used to produce more accurate solution with the least computational cost. To investigate the accuracy and efficiency of the developed model, the GFVM is compared with two versio...
متن کاملA two dimensional Simulation of crack propagation using Adaptive Finite Element Analysis
Finite element method (FEM) is one of the most famous methods which has many applications in varies studies such as the study of crack propagation in engineering structures. However, unless extremely fine meshes are employed, problem arises in accurately modelling the singular stress field in the singular element area around the crack tip. In the present study, the crack growth simulation has b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Review
دوره 44 شماره
صفحات -
تاریخ انتشار 2002